第二百零九章 启封人

而讲台上,李牧完成到了这一步后,接下来的步骤也就变得十分明朗了起来。

简简单单的几步下来之后,李牧最终转过头,笑道:“所以,到这里,我们就很容易地能够得到——”

“所有在q上的椭圆方程,都是k-模的。”

“至此。”

“我们就成功的将椭圆曲线、k理论以及模形式,融合了起来,实现了最后的统一。”

他的双手一张,用宣布的语气道:“暂且先不讨论待会儿对哥德巴赫猜想的证明,到了这一步,我可以十分自信的表示,代数几何,和数论的联系,变得更加紧密了起来。”

“朗兰兹先生所提出的纲领,距离最终的实现也从此更近了一步。”

话一落下,掌声便突然响起,从第一排开始,直到最后,全场的所有人,都鼓起了掌。

实现郎兰兹纲领是所有数学家的共同目标,而李牧做到了这一步,已经值得他们为此送上热烈的掌声了。

听着掌声,李牧也微微一笑,聆听着这热烈的掌声。

而直到掌声渐渐停息,随后他继续道:“另外,我也在这里做一个预测,基于k-模理论下的椭圆曲线,对于解决阿廷猜想有着十分重要的作用。”

“如果各位对解决阿廷猜想感兴趣的话,不妨利用k-模理论下的椭圆曲线尝试一番。”

听到李牧的话,在场的人又都是一愣。

四合院里的悠哉日子

阿廷猜想?

小主,

阿廷猜想也是朗兰兹纲领中一个十分重要的问题,因为其直接对应的是朗兰兹纲领两部分之一的函子性猜想,也就是说,证明阿廷猜想将有助于证明函子性猜想,而证明函子性猜想,也就等于将朗兰兹纲领实现了一半。

一时间,许多人都跟着思考了起来,最后纷纷眼前一亮。

确实!

k-模理论下的椭圆曲线,对于解决阿廷猜想的确有着十分巨大的帮助。

阿廷猜想推测,既不是平方数也不是-1的给定整数a是无穷多个素数p的原始根模,并且在椭圆曲线方面也有着延伸性的讨论,这么一想……

在场的不少人,立马就都作出决定,回去之后就尝试一下研究阿廷猜想。

哪怕证明不出来,取得一些成果,少说也能发一篇一区的论文嘛。

毕竟这可是阿廷猜想!

台上的李牧,将这些听众们的反应尽收眼底,微微一笑,这就是解决一个数学问题的意义。

因为解决一个问题过程中所诞生的理论和方法,将有助于更多问题的解决。

数学,也是由几千年前的1、、3、4,发展到今天这个模样。

随后,他也重新转过头,继续了接下来的步骤。

“那么,下面就要彻底解决哥德巴赫猜想了——其实到这里,后面的步骤也都十分清楚了。”

“所以,我就不再废话。”

李牧将已经写满的黑板擦干净,然后势如破竹般地进行起接下来的步骤。

场下的听众们也都紧跟着翻看的第二本论文,跟着李牧的证明,继续记起了笔记。

也确实如李牧所说,接下来的步骤十分的清楚,他运用k-模下的椭圆曲线,将圆法十分轻松地代入进去,随后又将筛法进行结合。

直到最后——

“所以,到这里,我们就可以轻松地看到,对于所有大于等于6的偶数n,单位圆上的环路积分式dn都是大于0的。”

“我们将其代入到原筛函数中,也可以轻松地验证,λ=的时候,该筛函数大于零。”

“至此——”

李牧放下了手中的黑板笔,再次看向观众席,干脆利落地宣布道:“显然,我们已经成功地证明了关于偶数的哥德巴赫猜想。”

“哥德巴赫寄出的那封信,在欧拉的手中未能完全启封,于是欧拉又将这封信,寄往了未来。”

“它跨越了时间的长河,在80年后的今天,成功的抵达了终点。”

“我很荣幸,成为它的启封人。”

“谢谢各位!”

本章完